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Abstract

In this paper the dispersion relation for the three-

dimensional TLM condensed node for modeling materials

with arbitrary permittivity and permeability tensors is pre-

sented, and the dispersion error associated with the TLM

model for these media is studied. A full dispersion analy-

sis of the TLM node is performed when modeling sapphire

substrates and gyromagnetic material. The study lays the

foundation for minimizing the numerical dispersion error

when modeling such media.

1.0 Introduction

Among the critical issues regarding the accuracy

of TLM results are the errors due to frequency and direc-

tional dispersion in the discrete spatial TLM network. It

is well known that the TLM method has a cutoff fre-

quency and deviations from the linear dispersion relation

for frequencies approaching the cutoff frequency. This

error is produced by the space discretization. In order to

evaluate the accuracy of the TLM method and quantify

the dispersion error, the dispersion relation of the discrete

mesh must be known. The generalized dispersion analy-

sis of two- and three-dimensional TLM schemes was first

proposed by Nielsen and Hoefer in 1993 [1]. The usual

approach for the derivation of the TLM dispersion rela-

tion is based on Floquet’s theorem [2] and the network

structure. Further work on the dispersion behavior of iso-

tropic media modeled by condensed nodes has been

reported by Krumpholz and Russer [3] and Trenkic et al.

[4]. The dispersion in anisotropic media has been studied

by Huber et al. [5] and Trenkic [6], but the investigations

are restricted to wave propagation along the mesh axes

and the mesh diagonals in symmetric anisotropic media.

Recently, Huang and Wu have proposed a unified

TLM model for wave propagation in electrical and optical

structures considering permittivity and permeability ten-

sors [7]. Using this model a TLM algorithm has been

derived to address various computational issues in non-

diagonal tensor problems encountered in practical situa-

tions. However, the wave properties of the node employed

in this model have not been systematically investigated

yet. The study of the dispersion characteristics of this node

remains a great challenge because of the cc~mplexity and

size of calculations involved. In the paper ihe dispersion

analysis is based on the numerical solution of an eigen-

value equation to overcome this dh%culty.

2.0 Theory

The eigenvalue equation of dispersion in the TLM

mesh is an implicit function of the propagation constant

k. of the traveling wave and of the mesh propagation

constants k k and kz along the x, y and z directions.
x’ y

det(l– ~F’S9= O (1)

where I is a 18 x 18 identity matrix, S is the scattering

matrix of the TLM node and P is a matrix which contains

the mesh propagation ccmstants. Its elements are zero

except for

P – P5, y = f/k’Ay1,12 –

P = P4 g = ejk=Az2,9 ,

P = P6 ,0 = (/k’Ax3,11 ,

P
-jkYAy

7,5 = Lplz, 1 =e
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–jkXAx
‘1O,6 = ‘11,3 = e

P 13,13 –– P14, 14 = P15, 15 = 1

’16, 16 = ’17, 17 = ’18, 18 = –1

T is a matrix which contains the network propaga-

tion constant. Al is the smallest dimension of a cuboid

cell.

T = e-JkOAII (2)

To obtain the dispersion relation, a MATLAB pro-

gram has been developed to generate a numerical solution

for the dispersion characteristics.

3.0 Dispersion characteristics of the TLM
node modeling different media

Since sapphire substrates have low dielectric losses,

low temperature coefficients of dielectric constant and lin-

ear expansion along with high thermal conductivity, they

are very attractive for microwave devices. Consider a

microstrip line printed on a m-cut sapphire substrate (Fig.

1). The relative permittivity tensor is given in the micros-

trip coordinate system by

[1

&xx &x. o

s= &&o
yx yy

(3)

o 0 Ezz

where

& = &1cos28 + &2sin20
xx

E = &lsin20 + &2cos20
YY

& = Eyx
XY

= (&l -&2) sint3cos(l

E = E,
Zz

El and &2 are equal to 9.4 and 11.6 [7], respec-

tively, An angle, (1 = 60”, is arbitrarily selected, and the
dispersion characteristics of the TLM node modeling the

m-cut sapphire substrate is shown in Fig. 3. Two different

spatial discretizations where used. Ax = 0.2, Ay = Az = 0.1

(cuboid cell) yield the dashed line, and Ax = Ay = Az = 0.1

(cubic cell) the solid line. The normalized propagation

vector is plotted in a polar representation in Fig. 3. The
vector /c. describes the unit circle for the infinitesimal

mesh. When a coarse discretization Ax/k z 0.15 is

selected, the wavelength in the TLM network can no

longer be considered large compared with the network

parameter Ax, and the velocity becomes dispersive and

depends on the direction of propagation. The maximum

dispersion occurs in the direction at the angle of 35°. For

comparison, the dispersion error of the two different dis-

cretizations has been plotted in Fig. 4. It appears that we

can choose a wave propagation direction for which the dis-

persion error is zero.

A similar study has been performed for a microstrip

line printed on r-cut sapphire substrate (Fig. 2). The

dielectric permittivity tensor [9] for the r-cut ( Q = 57.6°)

sapphire is

[19.4 0 0

: = o 10.03 –0,99 (4)

o –0.99 10.97

Fig. 5 shows its dispersion relation. Unlike in the m-cut

sapphire, the higher dispersion occurs along the axial

directions, and the minimum error can be found at an

angle close to 45° direction (Fig. 6). Comparing the dis-

persion characteristics with the two spatial discretizations

in Fig. 5, the dispersion error of the cubic cell is less than

that of the cuboid cell due to the finer discretization.

The TLM node can model not only materials with

permittivity tensor, but also with permeability tensor.

Huang and Wu have applied it to simulate a rectangular

waveguide partially filled with magnetized ferrite [7] and

obtained excellent agreement with the exact solutions

[10]. In this case, the permeability tensor of the ferrite

material is

j=po 1“po –jK

010 (5)

where p = –3.5741 and K = –8.2586.

For this particulm case the dispersion characteristic

of the partially filled waveguide is shown in Fig. 7. In

order to compare with the dispersion relations of the m-cut

and r-cut sapphires the same spatial discretization has been

used. The magnitude of the normalized propagation vector

is plotted vs. the angle with the x-axis. Fig. 8 shows that

the dispersion error is very small. The maximum disper-

sion error is less than 0.8 percent in this case.

4.0 Conclusion
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The dispersion relation for the three-dimensional

TLM condensed node modeling arbitrary permittivity and

permeability tensors is obtained. In the analysis, the dis-

persive behavior of the TLM node modeling m-cut sap-

phire, r-cut sapphire substrates and gyromagnetic material

is investigated with the same spatial discretization. It is

verified that a relatively fine mesh is required to obtain

good accuracy in the simulation of the m-cut sapphire

material. This analysis shows that it is possible to mini-

mize the numerical dispersion error when modeling aniso-

tropic and gyromagnetic media.
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Fig. 1 Microstrip geometry showing the crystal (x’,y’)

and microstrip (x,y) axes. (m-cut sapphire)

I h I/’

Flg.2 Arbitrarily oriented r-cut sapphire-based

microstrip.
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Fig. 3 The dispersion characteristics for a 3D condensed node

in x-y plane. Ax = 0.2, Ay = Az=O. 1 (sapphire-m-cut,

0=60”)

%

1’------UNIT CIRCLE
0.4 —: CUBIC CELL

: CUBOID CELL.. ---,

0.2

1 ‘

:..

~~ d

o 0.2 0.4 0.0 0.8
b / 2.ko

1
Fig.5 The dispersion characteristics for a 3D condensed node in

x-y plane. Ax= 0.2, Ay = Az = 0.1 (sapphire-r-cut)
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The dispersion characteristics for a 3D condensed node

in x-y plane. Ax = 0.2, Ay = Az = 0.1 (gyromagnetic

material)
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Fig.4 The dispersion error for a 3D condensed node in x-y

plane. Ax= 0.2, Ay = Az = 0.1 (sapphire-m-cut, 0=60°)

““r—_’—’_ ‘ /’”--’”..
o

b~
/‘\/ \

\/’
-0..5 / ‘\

\
/’ \

-1
\,’ \ \/’ \

-1.5 \

$. ,’
\

\
~ -2 , \

\
/’

\

-2.5
\

/’
CUBIC CELL

-2 /’
/

------ CUBOID CELL
-2.5

/
-4 .’

~,5~~
0 10 20 30 40 50 60 70 80

Angle

Fig. 6 The dispersion error for a 3D condensed node in x-y

plane. Ax= 0.2, A!y = Az = 0.1 (sapphire-r-cut, 8=57.6°)
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The dispersion error for a 3D condensed node in x-y

plane. Ax= 0.2, Ay = Az = 0.1 (gyromagnetic material)
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