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Abstract

In this paper the dispersion relation for the three-
dimensional TLM condensed node for modeling materials
with arbitrary permittivity and permeability tensors is pre-
sented, and the dispersion error associated with the TLM
model for these media is studied. A full dispersion analy-
sis of the TLM node is performed when modeling sapphire
substrates and gyromagnetic material. The study lays the
foundation for minimizing the numerical dispersion error
when modeling such media.

1.0 Introduction

Among the critical issues regarding the accuracy
of TLM results are the errors due to frequency and direc-
tional dispersion in the discrete spatial TLM network. It
is well known that the TLM method has a cutoff fre-
quency and deviations from the linear dispersion relation
for frequencies approaching the cutoff frequency. This
error is produced by the space discretization. In order to
evaluate the accuracy of the TLM method and quantify
the dispersion error, the dispersion relation of the discrete
mesh must be known. The generalized dispersion analy-
sis of two- and three-dimensional TLM schemes was first
proposed by Nielsen and Hoefer in 1993 [1]. The usual
approach for the derivation of the TLM dispersion rela-
tion is based on Floquet’s theorem [2] and the network
structure. Further work on the dispersion behavior of iso-
tropic media modeled by condensed nodes has been
reported by Krumpholz and Russer [3] and Trenkic et al.
[4]. The dispersion in anisotropic media has been studied
by Huber et al. [5] and Trenkic [6], but the investigations
are restricted to wave propagation along the mesh axes
and the mesh diagonals in symmetric anisotropic media.

Recently, Huang and Wu have proposed a unified
TLM model for wave propagation in electrical and optical
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structures considering permittivity and permeability ten-
sors [7]. Using this model a TLM algorithm has been
derived to address various computational issues in non-
diagonal tensor problems encountered in practical situa-
tions. However, the wave properties of the node employed
in this model have not been systematically investigated
yet. The study of the dispersion characteristics of this node
remains a great challenge because of the complexity and
size of calculations involved. In the paper the dispersion
analysis is based on the numerical solution of an eigen-
value equation to overcome this difficulty.

2.0 Theory

The eigenvalue equation of dispersion in the TLM
mesh is an implicit function of the propagation constant
kg of the travelling wave and of the mesh propagation
constants K, ky and k, along the x, y and z directions.
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where I is a 18 x 18 identity matrix, S is the scattering
matrix of the TLM node and P is a matrix which contains
the mesh propagation constants. Its elements are zero
except for
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T is a matrix which contains the network propaga-
tion constant. Al is the smallest dimension of a cuboid
cell.

T = 7% )
To obtain the dispersion relation, a MATLAB pro-

gram has been developed to generate a numerical solution
for the dispersion characteristics.

3.0 Dispersion characteristics of the TLM
node modeling different media

Since sapphire substrates have low dielectric losses,
low temperature coefficients of dielectric constant and lin-
ear expansion along with high thermal conductivity, they
are very attractive for microwave devices. Consider a
microstrip line printed on a m-cut sapphire substrate (Fig.
1). The relative permittivity tensor is given in the micros-
trip coordinate system by
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€, and €, are equal to 9.4 and 11.6 [7], respec-
tively. An angle, 6 = 60°, is arbitrarily selected, and the
dispersion characteristics of the TLM node modeling the
m-cut sapphire substrate is shown in Fig. 3. Two different
spatial discretizations where used. Ax = 0.2, Ay = Az = 0.1
(cuboid cell) yield the dashed line, and Ax = Ay = Az =0.1
(cubic cell) the solid line. The normalized propagation
vector is plotted in a polar representation in Fig. 3. The
vector k, describes the unit circle for the infinitesimal
mesh. When a coarse discretization Ax/A = 0.15 is
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selected, the wavelength in the TLM network can no
longer be considered large compared with the network
parameter Ax, and the velocity becomes dispersive and
depends on the direction of propagation. The maximum
dispersion occurs in the direction at the angle of 35°. For
comparison, the dispersion error of the two different dis-
cretizations has been plotted in Fig. 4. It appears that we
can choose a wave propagation direction for which the dis-
persion error is zero.

A similar study has been performed for a microstrip
line printed on r-cut sapphire substrate (Fig. 2). The
dielectric permittivity tensor [9] for the r-cut (0 = 57.6°%)
sapphire is
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Fig. 5 shows its dispersion relation. Unlike in the m-cut
sapphire, the higher dispersion occurs along the axial
directions, and the minimum error can be found at an
angle close to 45° direction (Fig. 6). Comparing the dis-
persion characteristics with the two spatial discretizations
in Fig. 5, the dispersion error of the cubic cell is less than
that of the cuboid cell due to the finer discretization.

The TLM node can model not only materials with
permittivity tensor, but also with permeability tensor.
Huang and Wu have applied it to simulate a rectangular
waveguide partially filled with magnetized ferrite [7] and
obtained excellent agreement with the exact solutions
[10]. In this case, the permeability tensor of the ferrite
material is

. [
H=H(01 0 ®

where L = —=3.5741 and k¥ = —8.2586.

For this particular case the dispersion characteristic
of the partially filled waveguide is shown in Fig. 7. In
order to compare with the dispersion relations of the m-cut
and r-cut sapphires the same spatial discretization has been
used. The magnitude of the normalized propagation vector
is plotted vs. the angle with the x-axis. Fig. 8 shows that
the dispersion error is very small. The maximum disper-
sion error is less than 0.8 percent in this case.

4.0 Conclusion



The dispersion relation for the three-dimensional
TLM condensed node modeling arbitrary permittivity and
permeability tensors is obtained. In the analysis, the dis-
persive behavior of the TLM node modeling m-cut sap-
phire, r-cut sapphire substrates and gyromagnetic material
is investigated with the same spatial discretization. It is
verified that a relatively fine mesh is required to obtain
good accuracy in the simulation of the m-cut sapphire
material. This analysis shows that it is possible to mini-
mize the numerical dispersion error when modeling aniso-
tropic and gyromagnetic media.
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Fig.1 Microstrip geometry showing the crystal (x’,y’)
and microstrip (x,y) axes. (m-cut sapphire)

Fig.2 Arbitrarily oriented r-cut sapphire-based
microstrip.
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Fig. 3 The dispersion characteristics for a 3D condensed node
in x-y plane. Ax = 0.2, Ay = Az=0.1 (sapphire-m-cut,
6=60°)
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Fig.5 The dispersion characteristics for a 3D condensed node in
x-y plane. Ax = 0.2, Ay = Az = 0.1 (sapphire-r-cut)
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Fig.7 The dispersion characteristics for a 3D condensed node
in x-y plane. Ax = 0.2, Ay = Az = 0.1 (gyromagnetic
material)
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Fig.4 The dispersion error for a 3D condensed node in x-y
plane. Ax = 0.2, Ay = Az = 0.1 (sapphire-m-cut, 8=60°)
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Fig. 6 The dispersion error for a 3D condensed node in x-y
plane. Ax = 0.2, Ay = Az = 0.1 (sapphire-r-cut, 6=57.6°)
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Fig. 8 The dispersion error for a 3D condensed node in x-y
plane. Ax = 0.2, Ay = Az = 0.1 (gyromagnetic material)



